Fe3O4@MCM-48–SO3H: An efficient magnetically separable nanocatalyst for the synthesis of benzo[f]chromeno[2,3-d]pyrimidinones
نویسندگان
چکیده
منابع مشابه
nano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Magnetically separable MgFe2O4 nanoparticle for efficient catalytic ozonation of organic pollutants
Magnetically separable MgFe2O4 was synthesized and used in catalytical ozonation of 4-chlorophenol (4-CP). The prepared catalyst was characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Brunauer−Emmett−Teller (BET) and Vibrating-Sample Magnetometer (VSM). The optimum conditions for the hig...
متن کاملEfficient Synthesis of Benzo[b]pyrans and Knoevenagel Products Using Magnetically Separable Nano TPPA-IL-Fe3O4
A simple, efficient, and green practical approach to Knoevenagel condensation of malononitrile and different aldehydes has been developed using an ionic liquid functionalized on Fe3O4 magnetic nanoparticles as heterogeneous catalyst. This nanostructural catalyst has also been applied for the synthesis of 4H-benzo[b]pyran derivatives in water at room temperature in short reaction time. All of th...
متن کاملFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
متن کاملMagnetically separable MgFe2O4 nanoparticle for efficient catalytic ozonation of organic pollutants
Magnetically separable MgFe2O4 was synthesized and used in catalytical ozonation of 4-chlorophenol (4-CP). The prepared catalyst was characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Brunauer−Emmett−Teller (BET) and Vibrating-Sample Magnetometer (VSM). The optimum conditions for the hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Catalysis
سال: 2015
ISSN: 1872-2067
DOI: 10.1016/s1872-2067(14)60286-2